Decentralised Data Fusion
Course Content

Day 1: Distributed Data Fusion Methods

1. Introduction
 1.1 Decentralised Data Fusion: A Historical Perspective
 1.2 Distributed Sensing, Observations and Decisions
 1.3 Goals of Decentralised Data Fusion
 1.4 Course Objectives and Summary

2. Probabilistic Methods in Decentralised Data Fusion
 2.1 Probabilistic Models
 2.2 Probabilistic Methods
 2.2.1 Bayes Theorem
 2.2.2 Data Fusion using Bayes Theorem
 2.2.3 Distributed Data Fusion with Bayes Theorem
 2.2.4 Data Fusion with Log-Likelihoods
 2.3 Information Measures
 2.3.1 Entropic Information
 2.3.2 Mutual Information
 2.3.3 Distributed Information Fusion
 2.3.4 Fisher Measures and the Information Filter
 2.3.5 Sensor Management

Laboratory 1: Data Fusion With Bayes Theorem

2.4 Multi-Sensor Estimation
 2.4.1 State and Sensor Models
 2.4.2 The Multi-Sensor Kalman Filter
 2.4.3 The Group-Sensor Method
 2.4.4 The Sequential-Sensor Method
 2.4.5 The Inverse-Covariance Form
 2.4.6 The Distributed Multi-Sensor Kalman Filter
2.4.7 Track-to-Track Fusion
2.4.8 The Distributed Inverse Covariance Filter
2.4.9 Asynchronous, Delayed and Asequent Observations

Laboratory 2: Multi-Sensor Multi-Target Tracking

Day 2: Decentralised Data Fusion: Estimation and Communication

3. Decentralised Data Fusion Systems

3.1 Data Fusion Architectures

3.1.1 Hierarchical Data Fusion Architectures
3.1.2 Distributed Data Fusion Architectures
3.1.3 Decentralised Data Fusion Architectures

3.2 Decentralised Estimation

3.2.1 The Information Filter
3.2.2 The Information Filter and Bayes Theorem
3.2.3 The Information Filter in Multi-Sensor Estimation
3.2.4 The Hierarchical Information Filter
3.2.5 The Decentralised Information Filter

3.3 Decentralised Multi-Target Tracking

3.3.1 Decentralised Data association
3.3.2 Decentralised Identification

Laboratory 3: Decentralised Multi-Target Tracking

4. Communication in Decentralised Systems

4.1 Decentralised Communication Theory
4.1.1 Communication Topologies
4.1.2 Bayesian Communication
4.1.3 Identification of Redundant Information in Sensor Networks
4.1.4 The Channel Filter
4.1.5 Broadcast Networks
4.1.6 Tree networks
4.1.7 General Networks

4.2 Decentralised Network Structures

4.2.1 Operation of Sensor Nodes
4.2.2 Structure of Channel Operations
4.2.3 Delayed, Asequent and Burst Communication
4.2.4 Network Integrity

Laboratory 4: Operation of Sensor Networks

Day 3: Decentralised Data Fusion: Advanced Methods and Systems

5. Management of Decentralised Networks

5.1 Management of Communication

5.1.1 Measuring the Value of Communication
5.1.2 Information Communication Strategies
5.1.3 Maximal Information Communication
5.1.4 Opportunistic Communication
5.1.5 Optimisation of the Sensor Network Topology

5.2 Sensor Management

5.2.1 Measuring Sensor Node Performance
5.2.2 Single Sensor Management: Sensor Targeting
5.2.3 Decentralised Decision Making
5.2.4 Coordinated Sensor Management: Cuing and Hand-off
5.2.5 Integrating and Managing non-Sensor Data Sources

Laboratory 5: Decentralised Sensor Management
6. Applications and Practical Considerations

6.1 OxNav: Decentralised Navigation and Control
 6.1.1 Decentralised Navigation Algorithms
 6.1.2 Sensor Management
 6.1.3 Decentralised Platform Control

6.2 ANSER: Decentralised Picture Compilation and Navigation
 6.2.1 Structure of UAV Platforms and Sensor Nodes
 6.2.2 Platform Registration and Alignment
 6.2.3 Multi-Platform Picture Compilation
 6.2.4 Multi-Platform Simultaneous Localisation and Mapping (SLAM)
 6.2.5 Communication Management

6.3 Large Scale Sensor Networks
 6.3.1 Registration and Deployment
 6.3.2 Tracking in Large Scale Sensor Networks
 6.3.3 Communication in Large Scale Sensor Networks

Laboratory 6: Large Scale Sensor Networks